

Product Specification Sheet

OLSB53(53)01L-C(I)D40

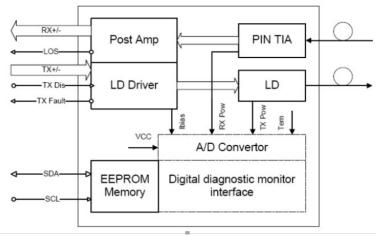
RoHS Compliant 155M 1310/1550nm(1550/1310nm) 40km Transceiver

欧凌克通信 深圳市欧凌克通信技术有限公司 **OLKOPTO** SHENZHEN OLINKCOM TECHNOLOGY CO., LTD

Product Features

- Supports 155 Mbps bit rates
- •Bi-Directional LC connector
- •Hot pluggable SFP footprint
- •1310nm DFB laser and1550nm PIN photo detector
- •1550nm DFB laser and 1310nm PIN photo detector
- Applicable for 40km SMF connection
- Low power consumption, < 0.825 W
- Digital Diagnostic Monitor Interface
- •Compliant with SFP MSA and SFF-8472
- Very low EMI and excellent ESD protection
- •Operating case temperature: Commerical:0 to 70 °C

Industrial -40 to 85 °C


Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- •Router/Server interface
- •Other Optical Links

Product Descriptions

Olinkphotonics' OLSB35(53)01L-C(I)D40, SFP-BIDI transceivers are high performance, cost effective modules supporting dual data-rate of 155Mbps and 40km transmission distance with SMF. The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements. The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Functional Diagram

* . *** .**. **. **. ***

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note
Supply Voltage	Vcc	-0.5	4.0	V	
Storage Temperature	Ts	-40	85	°C	
Relative Humidity	RH	0	85	%	

Note: Stress in excess of the maximum absolute ratings can cause permanent damage to the transceiver.

General Operating Characteristics

Parameter	Symbol	Min.	Тур	Max.	Unit	Note
Data Rate	DR		155		Mb/s	
Supply Voltage	Vcc	3.13	3.3	3.47	V	
Supply Current	Icc			250	mA	
Operating Case Temp.	Тс	0		70	°C	
	TI	-40		85	°C	

Electrical Characteristics (TOP(C) = 0 to 70 °C, TOP(I) =-40 to 85 °C, VCC = 3.13 to 3.47 V)

Parameter	Symbol	Min.	Тур	Max.	Unit	Note		
	Transmitter							
Differential data input swing	VIN,PP	120		820	mVpp	1		
Tx Disable Input-High	VIH	2.0		Vcc+0.3	V			
Tx Disable Input-Low	VIL	0		0.8	V			
Tx Fault Output-High	Voh	2.0		Vcc+0.3	V	2		
Tx Fault Output-Low	Vol	0		0.8	V	2		
Input differential impedance	Rin		100		Ω			
Receiver								
Differential data output swing	Vout,pp	340	650	800	mVpp	3		
Rx LOS Output-High	VROH	2.0		Vcc+0.3	V	2		
Rx LOS Output-Low	VROL	0		0.8	V	2		

Notes:

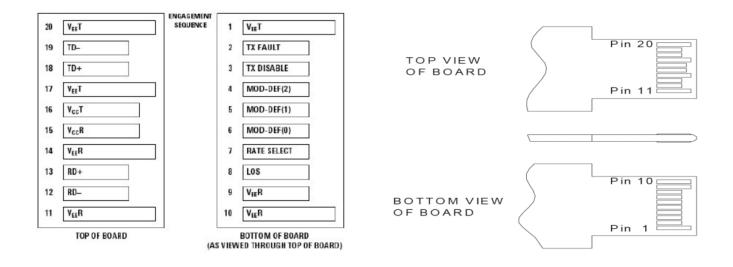
1. TD+/- are internally AC coupled with 100Ω differential termination inside the module.

2. Tx Fault and Rx LOS are open collector outputs, which should be pulled up with 4.7k to $10k\Omega$ resistors on the host board. Pull up voltage between 2.0V and Vcc+0.3V.

3.RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES.

Optical Characteristics (TOP(C) = 0 to 70 °C, TOP(I) =-40 to 85 °C, VCC = 3.13 to 3.47 V)

Parameter	Symbol	Min.	Тур	Max.	Unit	Note	
	Transmitter						
Operating Wayslangth	λ	1290	1310	1330	nm		
Operating Wavelength		1530	1550	1570			
Ave. output power (Enabled)	PAVE	-8		-4	dBm	1	
Extinction Ratio	ER	10			dB	1	
Side-Mode Suppression Ratio	SMSR	30			dB		
RMS spectral width 1310nm FP	Δλ			3	nm		
RMS spectral width 1550nm DFB				1	nm		
Rise/Fall time (20%~80%)	Tr/Tf			0.26	ns	2	
Dispersion penalty	Tdp			3.9	dB		
Output Optical Eye	Compliant with	h IEEE802.3 z	(class 1 aser saf	èty)			
		Receiv	ver				
	2		1550				
Operating Wavelength	λ		1310		nm		
Receiver Sensitivity	PSEN1			-32	dBm	3	
Overload	PAVE	-3			dBm	3	
LOS Assert	Ра	-45			dBm		
LOS De-assert	Pd			-32	dBm		
LOS Hysteresis	Pd-Pa	0.5			dB		


Notes:

1.Measured at 1250Mb/s with PRBS 2²³⁻¹NRZ test pattern.

2.Unfiltered, measured with a PRBS223-1 test pattern @155Mbps

3.Measured at 1250Mb/s with PRBS 2^{23-1} NRZ test pattern for BER < $1x10^{-12}$

Pin Definiton And Functions

凌克通信深圳市欧凌克通信技术有限公司

0	SHEN7HEN	OLINKCOM	TECHNOLOGY	
		OLINKCOM		CO., LID

Pin	Symbol	Name/Description	Notes
1	VeeT	Tx ground	
2	Tx Fault	Tx fault indication, Open Collector Output, active "H"	1
3	Tx Disable	LVTTL Input, internal pull-up, Tx disabled on "H"	2
4	MOD-DEF2	2 wire serial interface data input/output (SDA)	3
5	MOD-DEF1	2 wire serial interface clock input (SCL)	3
6	MOD-DEF0	Model present indication	3
7	Rate select	No connection	
8	LOS	Rx loss of signal, Open Collector Output, active "H"	4
9	VeeR	Rx ground	
10	VeeR	Rx ground	
11	VeeR	Rx ground	
12	RD-	Inverse received data out	5
13	RD+	Received data out	5
14	VeeR	Rx ground	
15	VccR	Rx power supply	
16	VccT	Tx power supply	
17	VeeT	Tx ground	
18	TD+	Transmit data in	6
19	TD-	Inverse transmit data in	6
20	VeeT	Tx ground	

Notes:

1. When high, this output indicates a laser fault of some kind. Low indicates normal operation. And should be pulled up with a $4.7 - 10 K\Omega$ resistor on the host board.

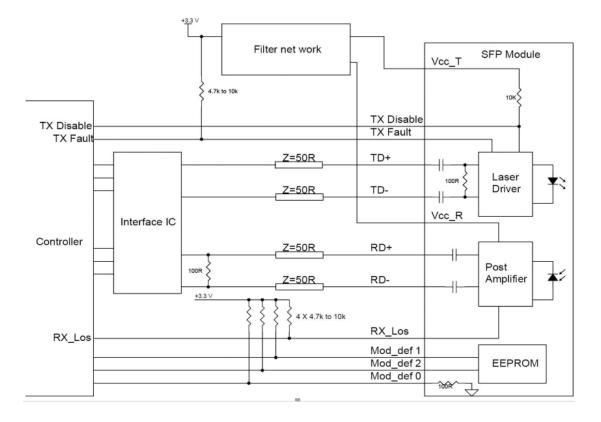
2. TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7 - 10K Ω resistor. Its states are:

Low $(0 - 0.8V)$: Transmitter on	(>0.8, < 2.0V): Undefined
High (2.0V~Vcc+0.3V): Transmitter Disabled	Open: Transmitter Disabled

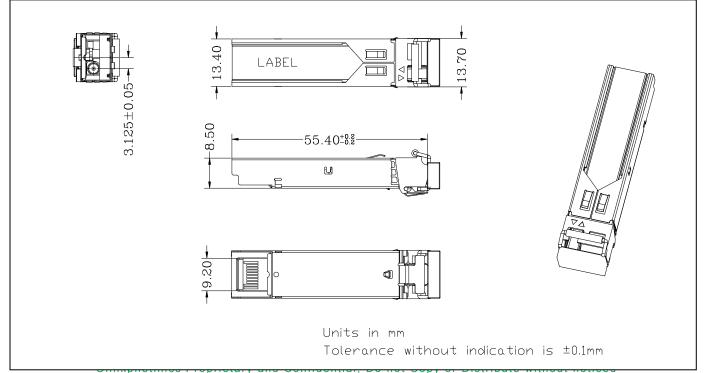
3.Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. The pull-up voltage shall be between $2.0V \sim Vcc+0.3V$.

Mod-Def 0 has been grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID

4. When high, this output indicates loss of signal (LOS). Low indicates normal operation.

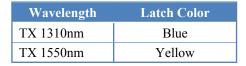

5.RD+/-: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.

6. TD+/-: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board.



欧凌克通信 深圳市欧凌克通信技术有限公司 SHENZHEN OLINKCOM TECHNOLOGY CO., LTD

Typical Interface Circuit


Package Dimensions

* . *** .**.**.***.******

÷.,

Ordering Information

Part Number	Description
OLSB3501L-CD40	SFP BIDI,155M ,1310/1550nm ,40km,0~70°C, with Digital Diagnostic Monitor
OLSB5301L-CD40	SFP BIDI,155M ,1550/1310nm ,40km,0~70°C, with Digital Diagnostic Monitor
OLSB3501L- ID40	SFP BIDI,155M ,1310/1550nm ,40km,-40~85°C, with Digital Diagnostic Monitor
OLSB5301L-ID40	SFP BIDI,155M ,1550/1310nm ,40km,-40~85°C, with Digital Diagnostic Monitor

For More Information

Shenzhen Olinkcom Technology Co.,Ltd

Add:4/F, No.2 Building, Delux Science and Technology City, No.5 Guanle Rd,Luhu Community, Guanlan Street, Longhua District, Shenzhen, China Tel: +86-755-27215326 Fax: +86-755-27217051 E-mail:<u>sales@olinkphotonics.com</u> Website:<u>www.olinkphotonics.com</u>